
Accelerating developer productivity with
Gradle

CRAIG ATKINSON, PRINCIPAL ENGINEER, GRADLE INC.

Gr8Conf US 2017

| 2

• Craig Atkinson
• Principal Engineer @ Gradle, Inc.
• Gradle Enterprise
• craig@gradle.com
• @craigatk1
• github.com/craigatk

About me

mailto:craig@gradle.com
https://twitter.com/craigatk1
http://github.com/craigatk

| 3

• Intro
• Faster builds

• Incremental compiler, build cache, etc.
• Easier local development

• Composite builds, tooling API, etc.
• Deep build insights

• Build scans, Gradle Enterprise

Agenda

| 4

Downloads /
Month4.0M

| 5

Open-source
Projects 
Worldwide
(TechCruch)

Top 20

https://techcrunch.com/2017/04/07/tracking-the-explosive-growth-of-open-source-software/

Gradle 1-min intro

| 7

Gradle build execution

Gradle build scripts Execute tasks

2-phase build:
 Configuration phase → build task graph
 Execution phase → execute task graph

Configure tasks

| 8

build.gradle
apply plugin: 'java-library'

repositories {
 jcenter()
}

dependencies {
 api 'org.apache.commons:commons-math3:3.6.1'
 implementation 'com.google.guava:guava:21.0'
 testImplementation 'junit:junit:4.12'
}

task greeting(type: DefaultTask) {
 doLast {
 println "Hello Gr8Conf US 2017!"
 }
}

| 9

Demo

Gradle 1-min intro

Incremental builds

The fastest task is the one you don’t need to execute  

Only re-run tasks affected by changes made between build
executions 

Keep output from up-to-date tasks

Incremental builds

| 12

Demo

Incremental builds

Build cache

| 14

Build cache

• Reuse outcomes of any previous run
• Rather than just the last

• Local cache and remote cache
• Task outputs are cached

Calculate cache key from inputs, use output as cache value

Inputs —> Task —> Output

Example for Compile task:
 Cache key: hash(source files, compiler flags, etc.)
 Cache value: fileTree(class files)

Build cache

| 16

Demo

Build cache

| 17

Build cache

Remote
Cache

Local
Cache

CI

Developer

| 18

Build cache

buildCache {

 local {

 enabled = !isCI

 }

 remote(HttpBuildCache) {

 url = "https://my.ge.server/cache/"

 push = isCI

 }

}

https://my.ge.server/cache/

| 19

Build cache in Gradle build

| 20

• Introduction to build cache blog post
• Extensive guide on using the build cache and improving the

cacheability of your build
• User guide section on build cache
• Highly-performant, scalable build cache backend available in

Gradle Enterprise
• Build cache node Docker image

Build cache resources

https://blog.gradle.org/introducing-gradle-build-cache
https://guides.gradle.org/using-build-cache/
https://guides.gradle.org/using-build-cache/
https://docs.gradle.org/current/userguide/build_cache.html
https://gradle.com/build-cache
https://gradle.com/build-cache
https://hub.docker.com/r/gradle/build-cache-node/

Compile avoidance &
incremental compiler

| 22

Save time by only recompiling the minimum number of source
files needed for a given change

Compile avoidance & incremental compiler

| 23

Compile avoidance

Project A Project B
MyInternalClass

recompile unchanged

| 24

• Analyze class dependencies to optimize which classes are
recompiled

• Fast in-memory cache of class ABIs inside daemon

Incremental compiler

| 25

Enable incremental compiler

tasks.withType(JavaCompile) {
 options.incremental = true
}

| 26

Compile avoidance & incremental compiler

| 27

• Introduction to incremental compiler and compile avoidance
• Video of Gradle Summit presentation on incremental

compilation
• User guide section on Java plugin
• Github repo with performance benchmark projects

Compile avoidance & incremental compiler

https://blog.gradle.org/incremental-compiler-avoidance
https://www.youtube.com/watch?v=9mlETxNLjkc
https://www.youtube.com/watch?v=9mlETxNLjkc
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/gradle/performance-comparisons

General performance
improvements

| 29

• Faster configuration time
• Parallel dependency downloads
• Parallel task / action execution by default

General performance improvements

Gradle daemon

| 31

Gradle builds executed much more quickly by a long-lived
background process that avoids expensive bootstrapping and

leverages caching

Gradle daemon

| 32

• Gradle daemon user docs section

Gradle daemon resources

https://docs.gradle.org/current/userguide/gradle_daemon.html

Worker API

| 34

Worker API

• Previously tasks in different projects can run in parallel
• New API to run task actions in single project in parallel safely
• Parallel actions cannot mutate shared state

| 35

Example worker
import javax.inject.Inject

class ReverseFile implements Runnable {
 File fileToReverse
 File destinationFile

 @Inject
 public ReverseFile(File fileToReverse, File destinationFile) {
 this.fileToReverse = fileToReverse
 this.destinationFile = destinationFile
 }

 @Override
 public void run() {
 destinationFile.text = fileToReverse.text.reverse()
 }
}

| 36

class ReverseFiles extends SourceTask {
 final WorkerExecutor workerExecutor

 @OutputDirectory
 File outputDir

 // The WorkerExecutor will be injected by Gradle at runtime

 @Inject
 public ReverseFiles(WorkerExecutor workerExecutor) {
 this.workerExecutor = workerExecutor

 }

 @TaskAction
 void reverseFiles() {
 source.files.each { file ->

 workerExecutor.submit(ReverseFile.class) { WorkerConfiguration config ->
 // Use the minimum level of isolation

 config.isolationMode = IsolationMode.NONE

 // Constructor parameters for the unit of work implementation

 config.params = [file, project.file("${outputDir}/${file.name}")]
 }

 }
 }
}

| 37

Worker isolation levels

• NONE - runs in same thread, minimum isolation
• CLASSLOADER - runs in thread with isolated classloader
• PROCESS - runs in separate process, maximum isolation

| 38

Worker API resources

• Video of Gradle Summit presentation on worker API
• Worker API documentation

https://youtu.be/kKyTqk2jSFo?list=PLLQbIfXVLZqEFMPsWijGR043NBxwPvgtI
https://docs.gradle.org/4.1-rc-1/userguide/custom_tasks.html#worker_api

Continuous build

| 40

• Gradle watches for file changes, re-runs tasks
• Run Gradle with -t

Continuous build

| 41

Demo

Continuous build

| 42

• Blog post introducing continuous build
• Continuous build user docs

Continuous build resources

https://blog.gradle.org/introducing-continuous-build
https://docs.gradle.org/current/userguide/continuous_build.html

Composite builds

| 44

Multi-repo change

my-app-repo

my-app

my-lib-repo

my-lib

Local repo
publish

| 45

Composite build

my-app-repo

my-app

my-lib-repo

my-libincludeBuild

| 46

Composite builds

• Fix a bug in a library used by app
• Break down a monolith into multiple repos
• Consume latest state of libraries in integrations builds

| 47

Use composite builds

rootProject.name='my-app'

includeBuild '../my-utils'

gradle --include-build ../my-utils run

Command line

settings.gradle

| 48

• Introduction to composite builds
• Video of Gradle Summit presentation on composite builds
• Video on composite builds with IntelliJ IDEA
• User docs section on composite builds

Composite build resources

https://blog.gradle.org/introducing-composite-builds
https://youtu.be/xFqFpa0WrZc
https://blog.jetbrains.com/idea/2017/03/webinar-recording-composite-builds-with-gradle
https://docs.gradle.org/current/userguide/composite_builds.html

New Gradle console

| 50

Parallel tasks console demo

| 51

Parallel tests console demo

IDE integration

| 53

IDE integration

• Project setup & synchronization
• Task execution
• Test execution
• Build execution insights

| 54

Tooling API

LauncherTooling API

Cmd Line

Gradle
(daemon)

IDE

| 55

• Buildship 2.0 blog post
• Buildship in Eclipse Marketplace
• IntelliJ/Gradle integration docs
• Gradle IDEA plugin docs

IDE integration resources

https://blog.gradle.org/announcing-buildship-2.0
https://marketplace.eclipse.org/content/buildship-gradle-integration
https://www.jetbrains.com/help/idea/gradle.html
https://docs.gradle.org/current/userguide/idea_plugin.html

Build scans

| 57

Build scans

• Details about build failures
• Visual timeline of which tasks ran and in which order
• Details on why tasks were executed (up-to-date reasons)
• Which dependencies were used
• Performance analysis of configuration, execution, etc.
• Attach custom data to your builds (Git commit, CI or local,

Checkstyle errors, etc.)

Deep insights into a build execution

https://blog.gradle.org/custom-data-in-build-scans

| 58

Build scans

• Quickly identify places in your build to optimize
• Find slowest tasks, long build configuration time, long

dependency download times, etc.
• See which tasks are and aren’t cacheable
• Identify slowest tests

Improve build performance

| 59

Build scans

• Easily share exactly what happened in when your build ran
(tasks, tests, etc.)

• Build environment (JDK, OS, CLI switches, etc.)
• Share exact links to many different parts of the build scan

(specific task, test, dependency, console output line, etc.)

Collaborate with colleagues and the community

| 60

Build scans

Demo

| 61

• scans.gradle.com
• Get started with build scans
• Build scan plugin user manual

Build scan resources

Build scans are a free service for everyone!

http://scans.gradle.com
https://scans.gradle.com/get-started
https://docs.gradle.com/build-scan-plugin/

Gradle Enterprise

| 63

Gradle Enterprise

• Build scans + search + comparison + more
• Scalable, high-performance build cache backend
• Hosted on-premise

| 64

Search build scans

• Search based on project, tasks executed, start time, custom
tags and values, etc.

• Find build scans to compare

| 65

Search build scans

Demo

| 66

Compare build scans

• Compare build scans to find differences between builds
• Dependencies, task inputs, custom values, environment, etc.

| 67

Compare build scans

Demo

| 68

Build cache backend

• High-performance, scalable build cache backend
• Build cache backend supports multiple, distributed nodes

| 69

Build cache UI

Demo

| 70

• Gradle Enterprise is a commercial offering
• Learn more: gradle.com/enterprise

Gradle Enterprise

https://gradle.com/enterprise

| 71

• Incremental builds
• Build cache
• Compile avoidance & incremental compiler
• Worker API
• Daemon
• Continuous builds
• Composite builds
• Tooling API / IDE integration
• Build scans
• Gradle Enterprise

Summary

| 72

• Online training (intro class is free!)
• Getting-started and topic-based guides
• User documentation
• Gradle forums

Additional resources

https://gradle.org/training/
https://gradle.org/guides
https://docs.gradle.org/current/userguide/userguide.html
https://discuss.gradle.org

Q & A

Thank you!
Craig Atkinson

