ﬁ Gradle

Accelerating developer productivity with
Gradle

Gr8Conf US 2017

CRAIG ATKINSON, PRINCIPAL ENGINEER, GRADLE INC.

Craig Atkinson
Principal Engineer @ Gradle, Inc.
Gradle Enterprise

craig@gradle.com
@craigatki

github.com/craigatk

mailto:craig@gradle.com
https://twitter.com/craigatk1
http://github.com/craigatk

Intro
Faster builds

Incremental compiler, build cache, etc.
Easier local development

Composite builds, tooling API, etc.
Deep build insights

Build scans, Gradle Enterprise

Top 20

Open-source
Projects

Worldwide
(TechCruch)

https://techcrunch.com/2017/04/07/tracking-the-explosive-growth-of-open-source-software/

Gradle 1-min intro

Gradle build execution

- \//‘E_,

Gradle build scripts Configure tasks

2-phase build:

selike

AT

IAY

Execute tasks

Configuration phase — build task graph

Execution phase — execute task graph

apply plugin: 'java-library'

repositories {
jcenter ()

dependencies {
apli 'org.apache.commons:commons-math3:3.6.1"'
implementation 'com.google.guava:guava:21.0'
testImplementation 'junit:junit:4.12°

task greeting(type: DefaultTask) {
doLast {
println "Hello Gr8Conf US 2017!"

Incremental builds

The fastest task is the one you don’t need to execute

Only re-run tasks affected by changes made between build
executions

Keep output from up-to-date tasks

Builld cache

Reuse outcomes of any previous run
Rather than just the last
Local cache and remote cache

Task outputs are cached

Calculate cache key from inputs, use output as cache value
Inputs —> Task —> Output
Example for Compile task:

Cache key: hash(source files, compiler flags, etc.)
Cache value: fileTree(class files)

Cl

Developer

Remote
Cache

Local
Cache

buildCache {
local {
enabled = !1isCI
}
remote (HttpBuildCache) {

url = "https://my.ge.server/cache/"

push = 1sCI

https://my.ge.server/cache/

Build Minutes Improvement

=
D
-—
D
L
2
-
Q)
L
o
o~
-
°©
QO
"
o
Q
S
3©

\

{2 G B) e 5 & ©
= ;@1 A D 666 @\&6 (‘96 (50?3 (,66

19
AQP" A0 e‘a’e %’7«% © ffb\ 0o «lef? o

0.00%

Commit ID

Introduction to build cache blog post

Extensive guide on using the build cache and improving the

cacheability of your build

User guide section on build cache
Highly-performant, scalable build cache backend available in

Gradle Enterprise

Build cache node Docker image

https://blog.gradle.org/introducing-gradle-build-cache
https://guides.gradle.org/using-build-cache/
https://guides.gradle.org/using-build-cache/
https://docs.gradle.org/current/userguide/build_cache.html
https://gradle.com/build-cache
https://gradle.com/build-cache
https://hub.docker.com/r/gradle/build-cache-node/

Compile avoidance &
Incremental compller

Compile avoidance & incremental compiler

Save time by only recompiling the minimum number of source

files needed for a given change

Project A

MyInternalClass

recompile

Project B

unchanged

Analyze class dependencies to optimize which classes are
recompiled
Fast in-memory cache of class ABIs inside daemon

Enable incremental compiler

tasks.withType (JavaCompile) {
options.incremental = true

}

B Maven 3.3.9
~ Gradle 3.3

B Gradle 3.4

1.3

Large project 1 change Medium preject 1 change Mult project Multi project
ABl-breaking change ABl-compatible change

o |26

Introduction to incremental compiler and compile avoidance

Video of Gradle Summit presentation on incremental

compilation

User guide section on Java plugin
Github repo with performance benchmark projects

https://blog.gradle.org/incremental-compiler-avoidance
https://www.youtube.com/watch?v=9mlETxNLjkc
https://www.youtube.com/watch?v=9mlETxNLjkc
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/gradle/performance-comparisons

General performance
Improvements

General performance improvements

- Faster configuration time
- Parallel dependency downloads
- Parallel task / action execution by default

(GGradle daemon

Gradle builds executed much more quickly by a long-lived
background process that avoids expensive bootstrapping and
leverages caching

Gradle daemon resources

- (Gradle daemon user docs section

https://docs.gradle.org/current/userguide/gradle_daemon.html

Worker AP]

Previously tasks in different projects can run in para

New API to run task actions in single project in para
Parallel actions cannot mutate shared state

safely

import javax.inject.Inject

class ReverseFile implements Runnable {
File fileToReverse

File destinationFile

@Inject
public ReverseFile(File fileToReverse, File destinationFile) {
this.fileToReverse = fileToReverse

this.destinationFile = destinationFile

}
@Override
public void run() {
destinationFile.text = fileToReverse.text.reverse()
}

o |35

class ReverseFiles extends SourceTask {

final WorkerExecutor workerExecutor

@OutputDirectory
File outputDir

// The WorkerExecutor will be injected by Gradle at runtime
@Inject
public ReverseFiles (WorkerExecutor workerExecutor) {

this.workerExecutor = workerExecutor

@TaskAction
void reverseFiles() {
source.files.each { file ->

workerExecutor.submit (ReverseFile.class) { WorkerConfiguration config ->

// Use the minimum level of isolation

config.isolationMode = IsolationMode.NONE

// Constructor parameters for the unit of work implementation

config.params = [file, project.file("S${outputDir}/$S{file.name}")]

o |36

NONE - runs in same thread, minimum isolation
CLASSLOADER - runs in thread with isolated classloader
PROCESS - runs in separate process, maximum isolation

Worker API| resources

Video of Gradle Summit presentation on worker AP

Worker APl documentation

https://youtu.be/kKyTqk2jSFo?list=PLLQbIfXVLZqEFMPsWijGR043NBxwPvgtI
https://docs.gradle.org/4.1-rc-1/userguide/custom_tasks.html#worker_api

Continuous build

Continuous build

Gradle watches for file changes, re-runs tasks
Run Gradle with -t

Continuous build resources

- Blog post introducing continuous build

- Continuous build user docs

https://blog.gradle.org/introducing-continuous-build
https://docs.gradle.org/current/userguide/continuous_build.html

Composite builds

4 N
Local repo
/ - ~ wblish
4) 4 D)
my-app my-lib
_) _ _
my-app-repo my-lib-repo

_

my-app

b

my-app-repo

includeBuild

<

_

\Alle

J

my-lib-repo

Fix a bug in a library used by app
Break down a monolith into multiple repos
Consume latest state of libraries in integrations builds

Use composite builds

Command line

gradle --include-build ../my-utils run

settings.gradle

rootProject.name="my-app'

includeBuild '../my-utils'

Introduction to composite builds
Video of Gradle Summit presentation on composite builds

Video on composite builds with IntelliJ IDEA

User docs section on composite builds

https://blog.gradle.org/introducing-composite-builds
https://youtu.be/xFqFpa0WrZc
https://blog.jetbrains.com/idea/2017/03/webinar-recording-composite-builds-with-gradle
https://docs.gradle.org/current/userguide/composite_builds.html

New Gradle console

G D ewendelin@rydia: ~/srcftesting/gradle

> ./gradlew :core:compileTestGroovyI

o |50

ea e

Y ./gradlew :logging:test

> tloggingi:test > P tests completed
> IDLE

o |51

IDE Integration

Project setup & synchronization
Task execution

Test execution

Build execution insights

IDE

N\

Tooling API

Gradle
(daemon)

Cmd Line

/

Launcher

Bui

ds

nip 2.0 b

0g post

Bui

ds

Nip 1N Ec

ipse Marketplace

IntelliJ/Gradle integration docs

Gradle IDEA plugin docs

https://blog.gradle.org/announcing-buildship-2.0
https://marketplace.eclipse.org/content/buildship-gradle-integration
https://www.jetbrains.com/help/idea/gradle.html
https://docs.gradle.org/current/userguide/idea_plugin.html

Build scans

Deep insights into a build execution

Details about build failures

Visual timeline of which tasks ran and in which order
Details on why tasks were executed (up-to-date reasons)
Which dependencies were used

Performance analysis of configuration, execution, etc.
Attach custom data to your builds (Git commit, Cl or local,

Checkstyle errors, etc.)

https://blog.gradle.org/custom-data-in-build-scans

Improve build performance

Quickly identify places in your build to optimize

Find slowest tasks, long build configuration time, long
dependency download times, etc.

See which tasks are and aren’t cacheable

|dentify slowest tests

Collaborate with colleagues and the community
Easily share exactly what happened in when your build ran

(tasks, tests, etc.)
Build environment (JDK, OS, CLI switches, etc.)
Share exact links to many different parts of the build scan

(specific task, test, dependency, console output line, etc.)

scans.gradle.com

Get started with build scans

Build scan plugin user manual

Build scans are a free service for everyone!

http://scans.gradle.com
https://scans.gradle.com/get-started
https://docs.gradle.com/build-scan-plugin/

Gradle Enterprise

Build scans + search + comparison + more
Scalable, high-performance build cache backend
Hosted on-premise

Search based on project, tasks executed, start time, custom
tags and values, etc.
Find build scans to compare

Compare build scans to find differences between builds

Dependencies, task inputs, custom values, environment, etc.

Hig
Bui

n-performance, scalable build cache backend

d cache backend supports multiple, distributed nodes

Gradle Enterprise

Gradle Enterprise is a commercial offering

Learn more: gradle.com/enterprise

https://gradle.com/enterprise

Incremental builds

Build cache

Compile avoidance & incremental compiler
Worker API

Daemon

Continuous builds

Composite builds

Tooling API / IDE integration

Build scans

Gradle Enterprise

Online training (intro class is free!)

Getting-started and topic-based guides
User documentation

Gradle forums

https://gradle.org/training/
https://gradle.org/guides
https://docs.gradle.org/current/userguide/userguide.html
https://discuss.gradle.org

Thank you!

Craig Atkinson

